Optimal Model Selection for Truncated Data among Non-Nested Competitive Models
Article Sidebar
Published
May 1, 2018
Main Article Content
Parisa Torkaman
Malayer University, Malayer, Iran
Abstract
Selecting a model for incomplete data is an important issue. Truncated data is an example of incomplete data, which sometimes occurs due to inherent limitations. The maximum likelihood estimator features and its asymptotic distribution are studied, and a test statistic among non-nested competitive model of incomplete data is presented, which can select an appropriate model close to the true model. This close-to-true model under the null hypothesis of the equivalency of two competitive models against alternative hypothesis is selected.
Article Details
Issue
Section
Articles